Advances in High Energy Physics

Neutrino Physics in the Frontiers of Intensities and Very High Sensitivities


Status
Published

1University of Ioannina, Ioannina, Greece

2Osaka University, Osaka, Japan

3University of Tennessee, Knoxville, USA


Neutrino Physics in the Frontiers of Intensities and Very High Sensitivities

Description

Neutrino physics includes very wide regions/subjects such as GeV accelerator neutrino oscillations, solar and astro neutrinos in the sub-MeV -10 MeV region, neutrino nuclear interactions in the 10 MeV - GeV region, double beta decays, and tritium beta decays.

Intensity frontier is a wide assortment of precision measurements for the properties particles like the neutrinos which may be well known, but their parameters have a long way before they are understood. It is a multidirectional approach with global participation using multibillion, megawatt sources, as well as megaton and extremely quiet detectors. The field of neutrino physics itself is very wide, including areas from accelerator produced neutrinos for high energy oscillations to solar and galactic sources at very low energies. There are neutrino-nuclear interactions, double beta decays, tritium beta decays, and interactions with complex nuclei that need to be understood at a high precision level of their absolute cross-section which can fix the strong part of the radiative corrections and can be model-independent checks of the standard model, particularly in the light of the new boson discoveries.

There are numerous first and second generation precision experiments, currently run and under construction. There are several plans for third generation experiments as well. These collaborations are overflown with new results and ideas for priorities and strategies for research. There is no defined consensus on the plan; therefore, large meetings in Asia, Europe (EU Strategy for neutrino), and US (Snowmass 2013) engage the community by exposing their ideas and priorities for experiments.

We, therefore, invite researchers in this field to contribute with articles on the subject. These can be original research articles or reviews of either the experimental or theoretical nature. Potential topics include but not limited to:

Potential topics include, but are not limited to:

  • Precision measurements of disappearance
  • Determination of mass differences
  • Tight constraints on theta-13, theta-23
  • Cross-section of neutrino interactions
  • Beta and double beta decays
  • Double-beta decay experiments
  • Neutrino interactions as probe to neutron densities
  • Nonstandard neutrino interactions
  • Coherent neutrino-nucleus scattering
  • Neutrino-nucleus cross sections at finite temperatures
  • Experiments at stopped muon sources
  • Short baseline interactions and oscillations
  • Searches for new physics within neutrino interactions

Articles

  • Special Issue
  • - Volume 2015
  • - Article ID 806067
  • - Editorial

Neutrino Physics in the Frontiers of Intensities and Very High Sensitivities

Theocharis Kosmas | Hiro Ejiri | Athanasios Hatzikoutelis
  • Special Issue
  • - Volume 2015
  • - Article ID 921757
  • - Research Article

High Energy Neutrino Emission from Astrophysical Jets in the Galaxy

T. Smponias | O. T. Kosmas
  • Special Issue
  • - Volume 2015
  • - Article ID 398796
  • - Research Article

Electron Capture Cross Sections for Stellar Nucleosynthesis

P. G. Giannaka | T. S. Kosmas
  • Special Issue
  • - Volume 2015
  • - Article ID 763648
  • - Research Article

Standard and Nonstandard Neutrino-Nucleus Reactions Cross Sections and Event Rates to Neutrino Detection Experiments

D. K. Papoulias | T. S. Kosmas
  • Special Issue
  • - Volume 2015
  • - Article ID 374061
  • - Research Article

Asymmetric Velocity Distributions from Halo Density Profiles in the Eddington Approach

J. D. Vergados
  • Special Issue
  • - Volume 2015
  • - Article ID 632131
  • - Research Article

Convoluted -Signals on 114Cd Isotope from Astrophysical and Laboratory Neutrino Sources

Vaitsa Tsakstara
  • Special Issue
  • - Volume 2015
  • - Article ID 817530
  • - Research Article

A CaMoO4 Crystal Low Temperature Detector for the AMoRE Neutrinoless Double Beta Decay Search

G. B. Kim | S. Choi | ... | W. S. Yoon
  • Special Issue
  • - Volume 2014
  • - Article ID 807857
  • - Research Article

CνB Damping of Primordial Gravitational Waves and the Fine-Tuning of the CγB Temperature Anisotropy

A. E. Bernardini | J. F. G. Santos
  • Special Issue
  • - Volume 2014
  • - Article ID 469572
  • - Research Article

Residual Symmetries Applied to Neutrino Oscillations at NOA and T2K

Andrew D. Hanlon | Wayne W. Repko | Duane A. Dicus
  • Special Issue
  • - Volume 2014
  • - Article ID 305298
  • - Research Article

Tests of Lorentz Symmetry in Single Beta Decay

Jorge S. Díaz
Advances in High Energy Physics
 Journal metrics
See full report
Acceptance rate13%
Submission to final decision118 days
Acceptance to publication22 days
CiteScore3.500
Journal Citation Indicator0.410
Impact Factor1.7
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.