Research Article

Potential JAK2 Inhibitors from Selected Natural Compounds: A Promising Approach for Complementary Therapy in Cancer Patients

Table 2

The chemical structures of the top herbal inhibitors identified in this study were compared to the structure of a known JAK2 inhibitor used as a positive control.

Ligand nameIntermolecular energy (kcal/mol)Total internal energy (kcal/mol)Torisonal free energy (kcal/mol)Unbound System’s energy (kcal/mol)Free binding energy (kcal/mol)Chemical structure

(A) Flavonoids
Orientin−8.30−10.68+3.58−0.91−14.49
Kaempferol 3-rutinoside-4′-glucoside−4.90−16.69+5.97−3.08−12.54
Vitexin−8.74−7.09+3.28−0.49−12.07
Isoquercitrin−8.87−8.93+3.88−2.23−11.69
Quercetin-3-rhamnoside−7.52−9.35+3.28−2.43−11.16
Quercitrin−8.79−7.68+3.28−2.16−11.03
Nicotiflorin−7.72−10.78+4.77−2.87−10.86
Kaempferol 7-O-glucoside−7.89−6.81+2.68−1.34−10.68
Astragalin−7.52−7.40+2.68−1.62−10.62
Cynaroside−7.21−7.55+2.68−1.68−10.40
Apigenin-7-glucoside−9.16−5.63+3.28−1.32−10.19

(B) Anthraquinones
Pulmatin−9.00−6.23+2.98−1.50−10.76
Emodin-8-glucoside−9.32−6.15+3.28−1.47−10.71

(C) Cinnamic acid derivatives
Chlorogenic acid−6.61−10.96+4.18−1.53−11.87
Cynarin−6.26−13.89+6.26−2.02−11.87
Rosmarinic acid−8.33−7.66+4.47−1.03−10.48

(D) Control inhibitor
1ZA−6.84−0.28+0.30−0.28−6.55

JAK2, janus-activated kinase 2; 1ZA, 2-TERT-BUTYL-9-FLUORO-3,6-DIHYDRO-7H-BENZ[H]-IMIDAZ[4,5-F] ISOQUINOLINE-7-ONE; pM, picomolar; nM, nanomolar; μM, micromolar. The interaction energies between these compound structures and the enzyme’s active site were also analyzed.