International Journal of Microbiology
 Journal metrics
See full report
Acceptance rate10%
Submission to final decision139 days
Acceptance to publication16 days
CiteScore6.500
Journal Citation Indicator0.570
Impact Factor3.4

Spiritual Holy Water Sites in Ethiopia: Unrecognized High-Risk Settings for Transmission of Pulmonary Tuberculosis

Read the full article

 Journal profile

International Journal of Microbiology publishes papers on microorganisms and their interaction with hosts and the environment. The journal covers all microbes, including bacteria, fungi, viruses, archaea, and protozoa.

 Editor spotlight

Chief Editor, Professor Urakawa, is currently based at Florida Gulf Coast University as Professor of Marine and Ecological Sciences and has a background in Environmental Microbiology and Microbial Ecology.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Management of Inoculation with Bradyrhizobium japonicum and Application of Vitamins for Hydroponic Soybean Cultivation

The exchange of technologies used in field cultivation for hydroponic systems can potentially increase plant development and grain production, requiring studies to verify the best management forms, such as growth-promoting bacteria and biostimulant compounds. With this in mind, the study aimed to evaluate the effect of the application of thiamine and niacin, alone and combined, to soybean plants in the absence and presence of inoculation with B. japonicum on the agronomic and physiological characteristics of the crop grown in an ebb and flow hydroponic system. Eight treatments were evaluated using t-test (LSD) and Tukey’s test, both at 5% probability (), in addition to Pearson correlation and canonical variables. The treatments consist of inoculation with B. japonicum at 1 mL 500 g−1 seeds (with and without) and foliar application of four solutions (water, niacin (0.1 g·L−1), thiamine (0.1 g·L−1), and niacin + thiamine (0.05 g·L−1 + 0.05 g·L−1)). We found that inoculation significantly improved the parameters evaluated and resulted in a gain of approximately 84.8% in yield when compared by t-test (). In addition, the action of the vitamins was more significant when they were applied without the presence of B. japonicum, especially niacin, either alone or combined with thiamine, which increased yield parameters in this condition, identified when the Tukey’s test () was applied. We conclude that inoculation with Bradyrhizobium japonicum in soybean seeds grown in a hydroponic system significantly benefits the development and grain yield, mainly when combined with vitamin solutions. Niacin also has the potential to be used alone or combined with thiamine in noninoculated or inoculated hydroponic soybean crops, respectively.

Research Article

Effect of Mixed Probiotics on Ovalbumin-Induced Atopic Dermatitis in Juvenile Mice

Atopic dermatitis is one of the most common dermatologic problems, especially in children. Given the ability of symbiotic microorganisms in modulating the immune system, probiotics administration has been studied in previous research in the management of atopic dermatitis. However, there are conflicting results between studies. In this study, we aimed to assess the effectiveness of mixed probiotics as a treatment option for atopic dermatitis induced by ovalbumin. BALB/c juvenile mice were classified and divided into the ovalbumin group, mixed probiotic group (ovalbumin + LK), and control group. Except for the control group, all mice were sensitized with ovalbumin to establish a model of atopic dermatitis. The mixed probiotics were given by gavage for 14 days. Mice body weight, skin lesions, skin inflammation, ovalbumin-specific Ig, the number of Treg and CD103+DC, and the expression level of PD-1/PD-L1 were examined. The results showed that mixed probiotics can improve body weight and alleviate skin symptoms. Mixed probiotics reduced serum Th2 inflammatory factors, eosinophils, mast cell degranulation, mast cell count, and the expression of ovalbumin-specific immunoglobulin E/G1 and increased the anti-inflammatory cytokine interleukin-10, Treg cells, CD103+DC cells, and the expression level of PD-1/PD-L1. These findings suggest that mixed probiotics could be a viable treatment option for atopic dermatitis and provide insight into the underlying mechanisms involved.

Research Article

Absence of Tuberculosis-Causing Mycobacteria from Slaughtered Livestock Tissues and Environmental Samples, Gauteng Province, South Africa

Mycobacterium tuberculosis complex (MTBC) is a group of bacteria responsible for causing tuberculosis in animals and humans. In South Africa (S.A), slaughterhouses are registered by the government and closely inspected and audited for hygienic slaughter practices. Meat inspection to detect lesions has been used for passive surveillance, monitoring, and diagnosis of the disease status. Information on the current status of bovine tuberculosis (bTB) in livestock in the country is limited. Hence, we investigated the occurrence of Mycobacterium spp. in the tissues of slaughtered livestock and environmental samples in abattoirs in Gauteng province of South Africa (S.A). The cross-sectional study employing random sampling from cattle, pigs, and sheep (with the collection of liver, lung, spleen, and different lymph nodes) irrespective of lesions was carried out in 19 red meat abattoirs. Five hundred animals were sampled, comprising cattle (n = 369), pigs (n = 90), and sheep (n = 41). Additionally, 19 environmental samples were collected from feedlots, or where animals drink water while awaiting slaughter, to identify mycobacterial species using culture, acid-fast bacteria staining, and polymerase chain reaction (PCR). The Chi-square and Fisher’s Exact tests were used to detect statistically significant differences in the frequency of detection of Mycobacterium spp. according to the variables investigated (types of tissues, livestock, abattoirs, etc.). The PCR assays detected no MTBC complex species DNA in the bacterial isolates from cattle (n = 32). Sequence analysis (16S rDNA) of the isolates from eight cattle confirmed only two species, namely Mycobacterium colombiense (99.81% identity) and Mycobacterium simiae (99.42% identity). The remaining isolates were identified as members of the Actinomadura species. From the environmental samples, bacterial isolation was made from three samples, and two could only be identified up to the genus level (Mycobacterium species) while the remaining isolate was identified as Mycobacterium senuense (99.22% identity). The study revealed the absence of bovine tuberculosis-causing pathogens in red meat abattoirs of the Gauteng province. Although non-tuberculous Mycobacteria have been implicated as potentially causing tuberculosis-like diseases in livestock, their occurrence in the current study was found to be low, but the potential to cause disease cannot be ignored.

Research Article

Detection of Pathogenic Serogroups and Virulence Genes in Listeria monocytogenes Strains Isolated from Beef and Beef Products Retailed in Gauteng Province, South Africa, Using Phenotypic and Polymerase Chain Reaction (PCR)-Based Methods

South Africa recently (2017-18) experienced the largest outbreak of human listeriosis in the world caused by L. monocytogenes following the consumption of “polony,” a ready-to-eat meat product. Most (59%) cases originated from Gauteng province, South Africa. As a follow-up study to the outbreak, we used standard bacteriological and molecular methods to determine the prevalence of pathogenic and virulent serogroups of L. monocytogenes in various beef and beef products retailed in Gauteng province, South Africa. The overall prevalence of Listeria spp. was 28% (112/400), comprising Listeria monocytogenes (9.3%), Listeria innocua (16.3%), and Listeria welshimeri (2.5%) (). It is crucial to have detected that the region (), type of product (), and temperature at storage () significantly affected the occurrence of L. monocytogenes in beef products. It is alarming that pathogenic serogroups 4b-4d-4e (51.4%) and 1/2a-3a (43.2%) were detected among the isolates of L. monocytogenes. Importantly, they were all carriers of seven virulence-associated genes (hlyA, inlB, plcA, iap, inlA, inlC, and inlJ). Our study also demonstrated that 16.7% of “polony” samples investigated were contaminated with L. monocytogenes. Considering that pathogenic and virulent L. monocytogenes contaminated beef and beef products retailed in South Africa, the food safety risk posed to consumers remains and cannot be ignored. Therefore, it is imperative to reduce the contamination of these products with L. monocytogenes during beef production, processing, and retailing to avoid future outbreaks of human listeriosis in the country.

Research Article

Mycobacterium tuberculosis Lineage Distribution Using Whole-Genome Sequencing and Bedaquiline, Clofazimine, and Linezolid Phenotypic Profiles among Rifampicin-Resistant Isolates from West Java, Indonesia

Tuberculosis (TB) is caused by Mycobacterium tuberculosis infection. Indonesia is ranked second in the world for TB cases. New anti-TB drugs from groups A and B, such as bedaquiline, clofazimine, and linezolid, have been shown to be effective in curing drug resistance in TB patients, and Indonesia is already using these drugs to treat patients. However, studies comparing the TB strain types with anti-TB resistance profiles are still relevant to understanding the prevalent strains in the country and their phenotypic characteristics. This study aimed to determine the association between the TB lineage distribution using whole-genome sequencing and bedaquiline, clofazimine, and linezolid phenotypic profile resistance among M. tuberculosisrifampicin-resistant isolates from West Java. M. tuberculosis isolates stock of the Department of Microbiology, Faculty of Medicine, Universitas Indonesia, was tested against bedaquiline, clofazimine, and linezolid using a mycobacteria growth indicator tube liquid culture. All isolates were tested for M. tuberculosis and rifampicin resistance using Xpert MTB/RIF. The DNA genome of M. tuberculosis was freshly extracted from a Löwenstein–Jensen medium culture and then sequenced. The isolates showed phenotypically resistance to bedaquiline, clofazimine, and linezolid at 5%, 0%, and 0%, respectively. We identified gene mutations on phenotypically bedaquiline-resistant strains (2/3), and other mutations also found in phenotypically drug-sensitive strains. Mykrobe analysis showed that most (88.33%) of the isolates could be classified as rifampicin-resistant TB. Using Mykrobe and TB-Profiler to determine the lineage distribution, the isolates were found to belong to lineage 4 (Euro-American; 48.33%), lineage 2 (East Asian/Beijing; 46.67%), and lineage 1 (Indo-Oceanic; 5%). This work underlines the requirement to increase the representation of genotype-phenotype TB data while also highlighting the importance and efficacy of WGS in predicting medication resistance and inferring disease transmission.

Research Article

Biofilm Formation, Pyocyanin Production, and Antibiotic Resistance Profile of Pseudomonas aeruginosa Isolates from Wounds

Pseudomonas aeruginosa is one of the most frequently resistant and dangerous bacteria isolated from infected wounds of patients. This study aimed to determine the prevalence of P. aeruginosa from infected wounds of patients in the Dschang District Hospital to evaluate their antibiotic susceptibility profiles and their ability to swarm and swim and correlate pyocyanin production with biofilm formation. Wound swab samples were collected and the identification of P. aeruginosa was performed using microbiological and biochemical tests. Their antimicrobial susceptibility was determined by the broth microdilution method. Swarming and swimming were determined by measuring the diameters of motility in semisolid/low-viscosity media. Furthermore, pyocyanin production and biofilm formation were evaluated spectrophotometrically using a microtiter plate. The prevalence of P. aeruginosa from infected wounds in our study population was 26%. All P. aeruginosa isolates were resistant to streptomycin and paromomycin, and the frequency of multidrug resistance (MDR) was 65.8%. All P. aeruginosa isolates showed the ability to produce biofilm and pyocyanin. Out of the 37 isolates screened, 19 including the reference strains (51.4%) were strong biofilm producers. A significant positive correlation was observed among biofilm formation, pyocyanin production, and the antibiotic resistance profile of the isolates. Findings from this study suggest that infected wounds could act as a reservoir for MDR and virulent P. aeruginosa. The presence of strong biofilm producers of P. aeruginosa in infected wounds is a serious public health concern. Therefore, surveillance programs to monitor and control MDR P. aeruginosa in these patients are required to prevent their dissemination in hospital settings.

International Journal of Microbiology
 Journal metrics
See full report
Acceptance rate10%
Submission to final decision139 days
Acceptance to publication16 days
CiteScore6.500
Journal Citation Indicator0.570
Impact Factor3.4
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.