International Journal of Intelligent Systems
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate14%
Submission to final decision128 days
Acceptance to publication20 days
CiteScore9.800
Journal Citation Indicator1.870
Impact Factor7.0

Submit your research today

International Journal of Intelligent Systems is now an open access journal, and articles will be immediately available to read and reuse upon publication.

Read our author guidelines

 Journal profile

International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction.

 Editor spotlight

Chief Editor, Professor Jin Li, is based at Guangzhou University, China. His research interests include trust and dependable artificial intelligence, cloud computing, and blockchain.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

An Efficient Anomaly Detection Method for Industrial Control Systems: Deep Convolutional Autoencoding Transformer Network

Industrial control systems (ICSs), as critical national infrastructures, are increasingly susceptible to sophisticated security threats. To address this challenge, our study introduces the CAE-T, a deep convolutional autoencoding transformer network designed for efficient anomaly detection and real-time fault monitoring in ICS. The CAE-T utilizes unsupervised deep learning, employing a convolutional autoencoder for spatial feature extraction from multidimensional time-series data, and combines this with a transformer architecture to capture long-term temporal dependencies. The design of the model facilitates rapid training and inference, while its dual-component approach, utilizing an optimization function based on support vector data description (SVDD), enhances detection accuracy. This integration synergistically combines spatiotemporal feature extraction, significantly improving the robustness and precision of anomaly detection in ICS environments. The CAE-T model demonstrated notable performance enhancements across three industrial control system datasets. Notably, the CAE-T model achieved approximately a 70.8% increase in F1 score and a 9.2% rise in AUC on the WADI dataset. On the SWaT dataset, the model showed improvements of approximately 2.8% in F1 score and 5% in AUC. The power system dataset saw more modest gains, with an approximately 0.1% uptick in F1 score and a 1% increase in AUC. These improvements validate the CAE-T model’s efficacy and robustness in anomaly detection across various scenarios.

Research Article

An Intelligent COVID-19-Related Arabic Text Detection Framework Based on Transfer Learning Using Context Representation

The misleading information during the coronavirus disease 2019 (COVID-19) pandemic’s peak time is very sensitive and harmful in our community. Analyzing and detecting COVID-19 information on social media are a crucial task. Early detection of COVID-19 information is very helpful and minimizes the risk of psychological security which leads to inconvenience in daily life. In this paper, a deep ensemble transfer learning framework with an understanding of the context of Arabic text COVID-19 information is proposed. This framework is inspired to spontaneously analyze and recognize the text about COVID-19. The ArCOVID-19Vac dataset has been used to train and test our proposed model. A comprehensive experimental study for each scenario is performed. For the binary classification scenario, the proposed framework records better evaluation results with 83.0%, 84.0%, 83.0%, and 84.0% in terms of accuracy, precision, recall, and F1-score, respectively. For the second scenario (three classes), the overall performance is recorded with an accuracy of 82.0%, precision of 80.0%, recall of 82.0%, and F1-score of 80.0%, respectively. In the last scenario with ten classes, the best evaluation performance results are recorded with an accuracy of 67.0%, a precision of 58.0%, a recall of 67.0%, and F1-score of 59.0%, respectively. In addition, we have applied an ensemble transfer learning model for this scenario to get 64.0%, 66.0%, 66.0%, and 65.0% in terms of accuracy, precision, recall, and F1-score, respectively. The results show that the proposed model through transfer learning provides better results for Arabic text than all state-of-the-art methods.

Research Article

Anime Audio Retrieval Based on Audio Separation and Feature Recognition

This paper proposes an anime audio retrieval method based on audio separation and feature recognition techniques, aiming to help users conveniently locate their desired audio segments and enhance the overall user experience. Additionally, by establishing an audio fingerprint database and a corresponding copyright information management system, it becomes possible to track and manage the audio content within anime, effectively preventing piracy and unauthorized use, thereby improving the management and protection of audio resources. Traditional methods for anime audio feature recognition suffer from issues like low efficiency and subjective factors. In contrast, the proposed approach overcomes these limitations by automatically separating and extracting audio fingerprints from different audio sources within anime and creating an anime audio fingerprint database for fast retrieval. The paper utilizes an improved audio separation model based on the efficient channel attention mechanism to separate the anime audio. Subsequently, feature recognition is performed on the separated anime audio, employing a contrastive learning-based audio fingerprint retrieval method for anime audio fingerprinting. Experimental results demonstrate that the proposed algorithm effectively alleviates the issue of poor audio separation performance in anime audio, while also improving retrieval efficiency and accuracy, meeting the demands for anime audio content retrieval.

Research Article

A Genetic Algorithm with Lower Neighborhood Search for the Three-Dimensional Multiorder Open-Size Rectangular Packing Problem

This paper addresses the multiorder open-dimension three-dimensional rectangular packing problem (3D-MOSB-ODRPP), which involves packing rectangular items from multiple orders into a single, size-adjustable container. We propose a novel metaheuristic approach combining a genetic algorithm with the Gurobi solver. The algorithm incorporates a lower neighborhood search strategy and is underpinned by a mathematical model representing the multiorder open-dimension packing scenario. Extensive experiments validate the effectiveness of the proposed approach. The LNSGA algorithm outperforms Gurobi and the traditional genetic algorithm in solution quality and computational efficiency. For small-scale instances, LNSGA achieves optimal values in most cases. LNSGA demonstrates significant optimization improvements over Gurobi and the genetic algorithm for large-scale instances. The superior performance is attributed to the effective integration of the lower neighborhood search mechanism and the Gurobi solver. This study offers valuable insights for optimizing the packing process in e-commerce warehousing and logistics operations.

Research Article

Dynamics and Control Strategies for SLBRS Model of Computer Viruses Based on Complex Networks

The proliferation of computer viruses has escalated in recent years, posing threats not only to individuals’ safety and property but also to societal well-being. Consequently, effectively curtailing virus spread has become an urgent imperative. To address this issue, our paper introduces a new virus propagation model and associated control strategy. First, diverging from conventional approaches in network virus literature, we propose a susceptible-latent-breaking-out-recovered-susceptible (SLBRS) virus propagation model tailored to the topological characteristics of scale-free networks, thus comprehensively incorporating network structure’s impact on virus propagation. Second, we analyze the model’s foundational properties, derive the basic reproduction number, and demonstrate the existence and global asymptotic stability of disease-free equilibrium. Finally, leveraging global stability of the model at the disease-free equilibrium, we integrate the target immunization strategy (TIS) and the acquaintance immunization strategy (AIS) to devise an optimal control strategy. The paper’s findings offer fresh insights into disease-free equilibrium existence and stability, furnishing a more dependable approach to curbing network virus dissemination. The simulation results demonstrate the persistent presence of network viruses in the absence of control measures and the instability of the disease-free equilibrium. However, effective control is achieved after implementing immunization measures.

Research Article

Optimal Gasoline Price Predictions: Leveraging the ANFIS Regression Model

This study presents an in-depth analysis of gasoline price forecasting using the adaptive network-based fuzzy inference system (ANFIS), with an emphasis on its implications for policy-making and strategic decisions in the energy sector. The model leverages a comprehensive dataset from the U.S. Energy Information Administration, spanning over 30 years of historical price data from 1993 to 2023, along with relevant temporal features. By combining the strengths of fuzzy logic and neural networks, the ANFIS approach can effectively capture the complex, nonlinear relationships present in the data, enabling reliable price predictions. The dataset’s preprocessing involved decomposing the date into year, month, and day components to enhance the model’s input features. Our methodology entailed a systematic approach to ANFIS regression, including data preparation, model training with the inclusion of the previous week’s prices as an additional feature, and rigorous performance evaluation using MSE, RMSE, and correlation coefficients. The results indicate that incorporating previous prices significantly enhances the model’s accuracy, as reflected by improved scores and correlation metrics. The findings have significant implications for the energy sector, where stakeholders can leverage the ANFIS model’s insights for strategic decision-making. Accurate gasoline price forecasts are instrumental in devising pricing strategies, managing risks associated with price volatility, and guiding policy formulation. The model’s predictive capability enables energy companies to optimize resource allocation, plan for future investments, and maintain competitive advantage in a market influenced by fluctuating prices. Moreover, policymakers can utilize these predictions to assess the impact of energy policies on market prices and consumer behavior, ensuring that regulatory measures align with market dynamics and sustainability goals. In addition to the ANFIS model, we also employed Vector Autoregression (VAR) and Autoregressive Integrated Moving Average (ARIMA) models to validate our approach and provide a comprehensive understanding of time series forecasting within the energy sector. Notably, the ANFIS model achieves a score of 0.9970 and a robust correlation of 0.9985, demonstrating its ability to accurately forecast gasoline prices based on historical data and features. The integration of these traditional techniques with advanced ANFIS modeling offers a robust framework for accurate and reliable gasoline price prediction, which is vital for informed policy-making and strategic planning in the energy industry.

International Journal of Intelligent Systems
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate14%
Submission to final decision128 days
Acceptance to publication20 days
CiteScore9.800
Journal Citation Indicator1.870
Impact Factor7.0
 Submit Evaluate your manuscript with the free Manuscript Language Checker

We have begun to integrate the 200+ Hindawi journals into Wiley’s journal portfolio. You can find out more about how this benefits our journal communities on our FAQ.